

DATA SHEET

ANTI-SULFURATED HIGH TEMPERATURE AUTOMOTIVE GRADE CHIP RESISTORS

AG series 5%, 1%, 0.5%

sizes 0402/0603/0805/1206

RoHS compliant & Halogen free

YAGEO

YAGEO

SCOPE

This specification describes AG0402 to AG1206 chip resistors with anti-sulfuration and high temperature application capabilities.

APPLICATIONS

- Industrial Equipment
- Power Application
- Networking Application
- High-end Computer & Multimedia Electronics in high sulfur environment
- Automotive electronics

FEATURES

- · AEC-Q200 qualified
- Superior resistance against sulfur containing atmosphere
- Halogen free product and production
- RoHS compliant
- Reduces environmentally hazardous waste
- High component and equipment reliability
- Saving of PCB space
- Moisture sensitivity level: MSL I

ORDERING INFORMATION - GLOBAL PART NUMBER

Part number is identified by the series name, size, tolerance, packaging type, temperature coefficient, taping reel and resistance value.

GLOBAL PART NUMBER

AG XXXX X X X XX XX XXXX L (1) (2) (3) (4) (5) (6) (7)

(I) SIZE

0402/0603/0805/1206

(2) TOLERANCE

 $D = \pm 0.5\%$

 $F = \pm 1\%$

 $J = \pm 5\%$ (for jumper ordering, use code of J)

(3) PACKAGING TYPE

R = Paper taping reel

K = Embossed plastic tape reel

(4) TEMPERATURE COEFFICIENT OF RESISTANCE

- = Base on spec

(5) TAPING REEL

07 = 7 inch dia. Reel

13 = 13 inch dia, Reel

7W = 7 inch dia. Reel & High power

(6) RESISTANCE VALUE

There are $2\sim4$ digits indicated the resistance value. Letter R/K/M is decimal point. Detailed resistance rules are displayed in the table of "Resistance rule of global part number".

(7) DEFAULT CODE

Letter L is the system default code for ordering only. (Note)

Resistance rule of global part number

Resistance coding ru	ule Example
XRXX (1 to 9.76 Ω)	IR = I Ω IR5 = I.5 Ω 9R76 = 9.76 Ω
XXRX	$10R = 10 \Omega$
(10 to 97.6 Ω)	$97R6 = 97.6 \Omega$
XXXR (100 to 976 Ω)	100R = 100 Ω
XKXX	IK = I,000 Ω
(1 to 9.76 KΩ)	9K76 = 9760 Ω
XMXX	IM = 1,000,000 Ω
(1 to 9.76 M Ω)	9M76= 9,760,000 Ω

ORDERING EXAMPLE

The ordering code for an AG0402 chip resistor, value $100 \text{ K}\Omega$ with $\pm 1\%$ tolerance, supplied in 7-inch tape reel with 10Kpcs quantity is: AG0402FR-07100KL.

NOTE

- I. All our R-Chip products are RoHS compliant and Halogen free. "LFP" of the internal 2D reel label states "Lead-Free Process"
- 2. On customized label, "LFP" or specific symbol can be printed

Chip Resistor Surface Mount | AG | SERIES | 0402 to 1206

AG0402

No marking

AG0603 / AG0805 / AG1206

E-24 series: 3 digits, $\pm 5\%$, $\geq 10\Omega$

First two digits for significant figure and 3rd digit for number of zeros

AG0603

E-24 series: 3 digits, ±1%

One short bar under marking letter

E-96 series: 3 digits, ±1%

First two digits for E-96 marking rule and 3rd letter for number of zeros

Fig. 4 Value = 12.4 K Ω

Fig. 5 Value = $10 \text{ K}\Omega$

AG0805 / AG1206

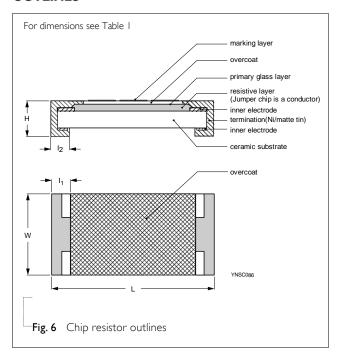
Both E-24 and E-96 series: 4 digits, ±1%

First three digits for significant figure and 4th digit for number of zeros

NOTE

For further marking information, please see special data sheet "Chip resistors marking". Marking of AG series is the same as RC series

CONSTRUCTION


The resistors are constructed on top of a high grade ceramic body. Internal metal electrodes are added at each end and connected by a resistive glaze. The resistive glaze is covered by a glass.

The composition of the glaze is adjusted to give the approximate required resistance value and laser trimming of this resistive glaze achieves the value within tolerance. The whole element is covered by a protective overcoat. Size 0603 and bigger is marked with the resistance value on top. Finally, the two external terminations (Ni / matte tin) are added. See fig.6.

Table I For outlines see fig. 6

TYPE	L (mm)	W (mm)	H (mm)	I _I (mm)	I ₂ (mm)
AG0402	1.00±0.05	0.50±0.05	0.35±0.05	0.20±0.10	0.25±0.10
AG0603	1.60±0.10	0.80±0.10	0.45±0.10	0.25±0.15	0.25±0.15
AG0805	2.00±0.10	1.25±0.10	0.50±0.10	0.35±0.20	0.45±0.20
AG1206	3.10±0.10	1.60±0.10	0.55±0.10	0.45±0.20	0.50±0.20

OUTLINES

ELECTRICAL CHARACTERISTICS

Table 2

		CHARACTERISTICS						
TYPE	POWER	Operating Temperature Range	Max. Working Voltage	Max. Overload Voltage	Dielectric Withstanding Voltage	Resistance Range	Temperature Coefficient	Jumper Criteria
AG0402	1/16 W		50V	100V	100V	5% (E24) $1\Omega \le R \le 22M\Omega$ 0.5%, 1% (E24/E96) $1\Omega \le R \le 10M\Omega$ Jumper < 50mΩ	$\begin{split} & \Omega \le R \le 10\Omega \\ & \pm 200 \text{ ppm/°C} \\ & 0\Omega < R \le 10\text{M}\Omega \\ & \pm 100 \text{ ppm/°C} \\ & 0\text{M}\Omega < R \le 22\text{M}\Omega \\ & \pm 200 \text{ ppm/°C} \end{split}$	Rated Current I A Max, Current 2A
		50V	100V	100V	5% (E24) $1\Omega \le R \le 10 \text{ M}\Omega$ 0.5%, $1%$ (E24/E96) $1\Omega \le R \le 10\text{M}\Omega$	$ \Omega \le R \le 0\Omega $ $\pm 200 \text{ ppm/°C}$ $ 0\Omega \le R \le 0M\Omega $ $\pm 00 \text{ ppm/°C} $		
AG0603	1/10 W	-	75V	150V	150V	5% (E24) $1\Omega \le R \le 22M\Omega$ 0.5%, 1% (E24/E96) $1\Omega \le R \le 10M\Omega$ Jumper $< 50m\Omega$	$\begin{split} & \Omega \leq R \leq 10\Omega \\ & \pm 200 \text{ ppm/}^{\circ}\text{C} \\ & 0\Omega < R \leq 10\text{M}\Omega \\ & \pm 100 \text{ ppm/}^{\circ}\text{C} \\ & 10\text{M}\Omega < R \leq 22\text{M}\Omega \\ & \pm 200 \text{ ppm/}^{\circ}\text{C} \end{split}$	Rated Current I A Max. Current 2A
_	I/8 W	_55 °C to 175 °C	75V	150V	150V	$5\% \text{ (E24)}$ $1\Omega \leq R \leq 10 \text{ M}\Omega$ $0.5\%, 1\% \text{ (E24/E96)}$ $1\Omega \leq R \leq 10\text{M}\Omega$	$1\Omega \le R \le 10\Omega$ $\pm 200 \text{ ppm/°C}$ $10\Omega \le R \le 10M\Omega$ $\pm 100 \text{ ppm/°C}$	
AG0805	0.15 W		150V	300V	300V	$5\% \text{ (E24)}$ $1\Omega \leq R \leq 22\text{M}\Omega$ $0.5\%, 1\% \text{ (E24/E96)}$ $1\Omega \leq R \leq 10\text{M}\Omega$ $\text{Jumper} < 50\text{m}\Omega$	$\begin{split} & \Omega \leq R \leq 10\Omega \\ & \pm 200 \text{ ppm/°C} \\ & 0\Omega < R \leq 10M\Omega \\ & \pm 100 \text{ ppm/°C} \\ & 0M\Omega < R \leq 22M\Omega \\ & \pm 200 \text{ ppm/°C} \end{split}$	Rated Current 2A Max. Current 5A
AG1206	1/4 W		200V	400V	500V	5% (E24) $I\Omega \le R \le 22M\Omega$ 0.5%, $I\%$ (E24/E96) $I\Omega \le R \le I0M\Omega$ Jumper $< 50m\Omega$	$\begin{split} & \text{I}\Omega \leq \text{R} \leq \text{I}0\Omega \\ & \pm 200 \text{ ppm/}^{\circ}\text{C} \\ & \text{I}0\Omega < \text{R} \leq \text{I}0\text{M}\Omega \\ & \pm \text{I}00 \text{ ppm/}^{\circ}\text{C} \\ & \text{I}0\text{M}\Omega < \text{R} \leq 22\text{M}\Omega \\ & \pm 200 \text{ ppm/}^{\circ}\text{C} \end{split}$	Rated Current 2A Max. Current 10A

10

FOOTPRINT AND SOLDERING PROFILES

For recommended footprint and soldering profiles of AG-series is the same as RC-series. Please see the special data sheet "Chip resistors mounting".

0402 to 1206

PACKING STYLE AND PACKAGING QUANTITY

Table 3 Packing style and packaging quantity

PACKING STYLE	REEL DIMENSION	AG0402	AG0603 AG0805 AG1206
Paper taping reel (R)	7" (178 mm)	10,000/20,000	5,000
	13" (330 mm)	50,000	20,000

NOTE

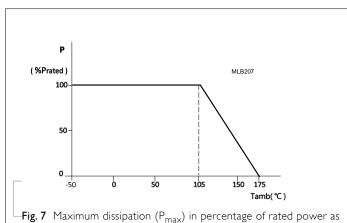
I. For paper/embossed tape and reel specification/dimensions, please see the special data sheet "Chip resistors packing".

FUNCTIONAL DESCRIPTION

OPERATING TEMPERATURE RANGE

AG0402 - AG1206 Range: -55°C to + 175°C

POWER RATING


Each type rated power at 105°C:

AG0402=1/16W (0.0625W); 1/10W (0.1W)

AG0603=1/10W (0.1W); 1/8W (0.125W)

AG0805=0.15 W

AGI206=I/4 W (0.25W)

a function of the operating ambient temperature (T_{amb})

RATED VOLTAGE

The DC or AC (rms) continuous working voltage corresponding to the rated power is determined by the following formula:

$$V = \sqrt{(P \times R)}$$

or max. working voltage whichever is less

Where

V = Continuous rated DC or AC (rms) working voltage (V)

P = Rated power (W)

 $R = Resistance value (\Omega)$

Chip Resistor Surface Mount | AG | SERIES | 0402 to 1206

TESTS AND REQUIREMENTS

Table 4 Test condition, procedure and requirements

TEST	TEST METHOD	PROCEDURE	REQUIREMENTS
High Temperature Exposure	AEC-Q200 Test 3 MIL-STD-202 Method 108	1,000 hours at 175± 3°C , unpowered	$\pm (1.0\% + 0.05\Omega)$ for D/F tol $\pm (2.0\% + 0.05\Omega)$ for J tol <100 m Ω for Jumper
Moisture Resistance	MIL-STD-202 Method 106	Each temperature / humidity cycle is defined at 8 hours, 3 cycles / 24 hours for 10d. with 25 °C / 65 °C 95% R.H, without steps 7a & 7b, unpowered	$\pm (0.5\% + 0.05\Omega)$ for D/F tol $\pm (2.0\% + 0.05\Omega)$ <100 m Ω for Jumper
Biased Humidity	AEC-Q200 Test 7 MIL-STD-202 Method 103	1,000 hours; 85 °C / 85% RH 10% of operating power Measurement at 24±4 hours after test conclusion.	$\pm (3.0\% + 0.05\Omega)$ <100 m Ω for Jumper
Operational Life	AEC-Q200 Test 8 MIL-STD-202 Method 108	1,000 hours at 125 °C, derated voltage applied for 1.5 hours on, 0.5 hour off, still-air required	\pm (1.0%+0.05 Ω) for D/F tol \pm (3.0%+0.05 Ω) for J tol <100 m Ω for Jumper
Resistance to Soldering Heat	AEC-Q200 Test 15 MIL-STD-202 Method 210	Condition B, no pre-heat of samples Lead-free solder, 260±5 °C, 10±1 seconds immersion time Procedure 2 for SMD: devices fluxed and cleaned with isopropanol	$\pm (0.5\% \pm 0.05\Omega)$ for D/F tol $\pm (1.0\% \pm 0.05\Omega)$ for J tol <50 m Ω for Jumper No visible damage
Thermal Shock	MIL-STD-202 Method 107	-55/+125 °C Number of cycles is 300. Devices mounted Maximum transfer time is 20 seconds. Dwell time is 15 minutes. Air – Air	$\pm (0.5\% + 0.05\Omega)$ for D/F tol $\pm (1.0\% + 0.05\Omega)$ for J tol <50 m Ω for Jumper
ESD	AEC-Q200 Test 17 AEC-Q200-002	Human Body Model, I pos. + I neg. discharges 0201: 500V 0402/0603: IKV 0805 and above: 2KV	\pm (3.0%+0.05Ω) <50 mΩ for Jumper

Chip Resistor Surface Mount AG SERIES 0402 to 1206

TEST	TEST METHOD	PROCEDURE	REQUIREMENTS
Solderability - Wetting	AEC-Q200 Test 18 J-STD-002	Electrical Test not required Magnification 50X SMD conditions: (a) Method B, aging 4 hours at 155 °C dry heat, dipping at 235±3 °C for 5±0.5 seconds. (b) Method B, steam aging 8 hours, dipping at 215±3 °C for 5±0.5 seconds. (c) Method D, steam aging 8 hours, dipping at 260±3 °C for 30±0.5 seconds.	Well tinned (≥95% covered) No visible damage
Board Flex	AEC-Q200 Test 21 AEC-Q200-005	Chips mounted on a 100mm x 40mm glass epoxy resin PCB (FR4) Bending for 0201/0402: 5 mm 0603/0805: 3 mm 1206 and above: 2 mm Holding time: minimum 60 seconds	\pm (1.0%+0.05 Ω) <50 m Ω for Jumper
Temperature Coefficient of Resistance (T.C.R.)	MIL-STD-202 Method 304	At +25/–55 °C and +25/+125 °C Formula:	Refer to table 2
		T.C.R= $\frac{R_2-R_1}{R_1(t_2-t_1)} \times 10^6 \text{ (ppm/°C)}$ Where $t_1=+25 \text{ °C}$ or specified room temperature $t_2=-55 \text{ °C}$ or $+125 \text{ °C}$ test temperature $R_1=$ resistance at reference temperature in ohms $R_2=$ resistance at test temperature in ohms	
Short Time Overload	IEC60115-1 8.1	2.5 times of rated voltage or maximum overload voltage whichever is less for 5 sec at room temperature	$\pm (1.0\% + 0.05\Omega)$ for D/F tol $\pm (2.0\% + 0.05\Omega)$ for J tol <50 m Ω for Jumper
FOS	ASTM-B 809-95* * Modified	Oil 105° 500 hours. unpowered	\pm (5.0%+0.05 Ω) <100 m Ω for Jumper

Product specification

9/10

Chip Resistor Surface Mount | AG | SERIES | 0402 to 1206

REVISION HISTORY

REVISION DATE CHANGE NOTIFICATION DESCRIPTION

Version 0 Apr. 08, 2022 - - Preliminary specification

Chip Resistor Surface Mount AG SERIES 0402 to 1206

LEGAL DISCLAIMER

YAGEO, its distributors and agents (collectively, "YAGEO"), hereby disclaims any and all liabilities for any errors, inaccuracies or incompleteness contained in any product related information, including but not limited to product specifications, datasheets, pictures and/or graphics. YAGEO may make changes, modifications and/or improvements to product related information at any time and without notice.

YAGEO makes no representation, warranty, and/or guarantee about the fitness of its products for any particular purpose or the continuing production of any of its products. To the maximum extent permitted by law, YAGEO disclaims (i) any and all liability arising out of the application or use of any YAGEO product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for a particular purpose, non -infringement and merchantability.

YAGEO products are designed for general purpose applications under normal operation and usage conditions. Please contact YAGEO for the applications listed below which require especially high reliability for the prevention of defects which might directly cause damage to the third party's life, body or property: Aerospace equipment (artificial satellite, rocket, etc.), Atomic energy-related equipment, Aviation equipment, Disaster prevention equipment, crime prevention equipment, Electric heating apparatus, burning equipment, Highly public information network equipment, data-processing equipment, Medical devices, Military equipment, Power generation control equipment, Safety equipment, Traffic signal equipment, Transportation equipment and Undersea equipment, or for any other application or use in which the failure of YAGEO products could result in personal injury or death, or serious property damage. Particularly YAGEO Corporation and its affiliates do not recommend the use of commercial or automotive grade products for high reliability applications or manned space flight.

Information provided here is intended to indicate product specifications only. YAGEO reserves all the rights for revising this content without further notification, as long as products are unchanged. Any product change will be announced by PCN.

